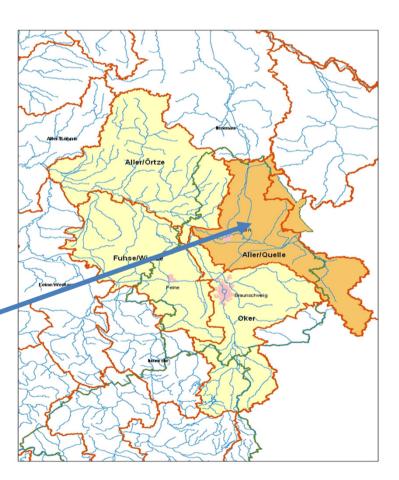
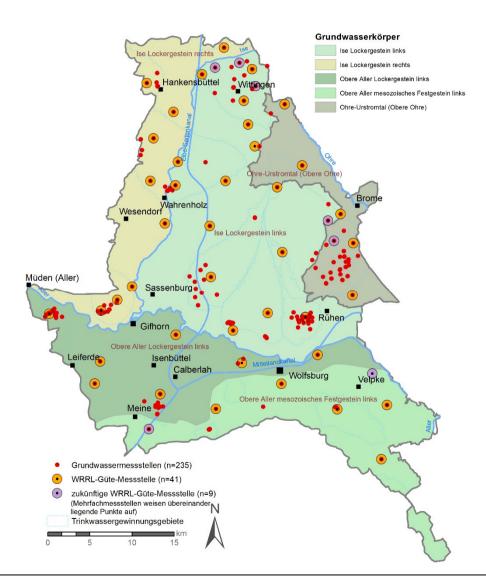

Vorstellung des GW-Güteberichtes für das WRRL-Bearbeitungsgebiet Aller-Quelle

Thorsten Hartung & Martin Hoetmer & Annika Bertram
NLWKN – Betriebsstelle Süd


Sitzung der Geko Aller-Quelle am 06.06.2019 in Gifhorn

Bearbeitungsgebiet 14 gem. EG-WRRL (Geko Aller-Quelle plus Anteile Mulde)



Darstellung der Grundwasserkörper gem. EG-WRRL

und des

Grundwasser-Messstellenpools (235)

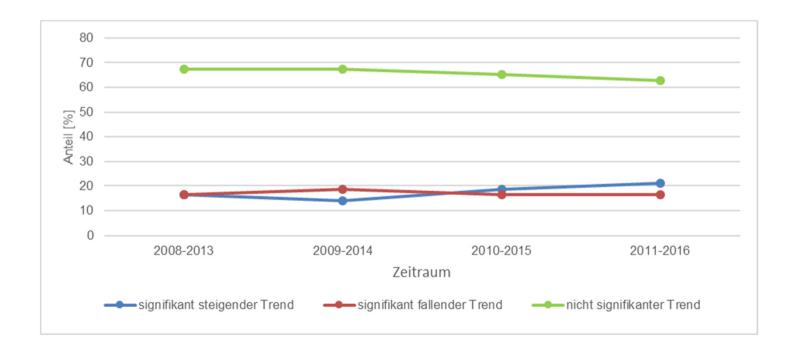
und der WRRL-Güte-Mst.

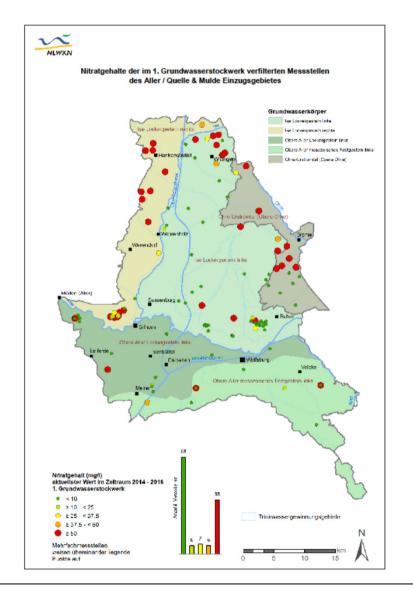
Übersicht der im Bericht ausgewerteten Güte-Parameter mit den jeweiligen Schwellen- bzw. Grenzwerten.

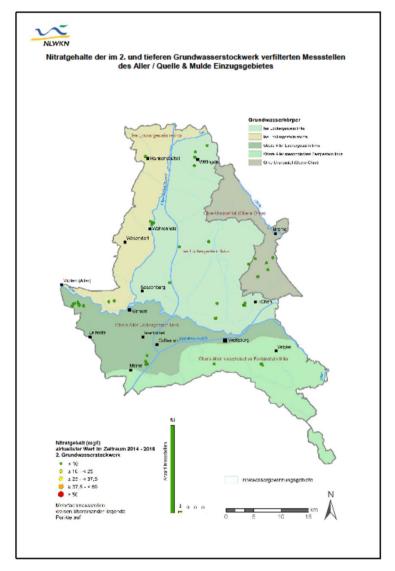
Parameter	GrwV 2010	TrinkwV 2001 (2018)
Ammonium	0,5 mg/l	0,5 mg/l
Arsen	10 μg/l	10 μg/l
Blei	10 μg/l	10 μg/l
Cadmium	0,5 μg/l	3 μg/l
Chlorid	250 mg/l	250 mg/l
Leitfähigkeit	-	2790 μS/cm (bei 25°C)
Nitrat	50 mg/l	50 mg/l
pH-Wert	-	≥ 6,5 und ≤ 9,5
Quecksilber	0,2 μg/l	1 μg/l
Sulfat	250 mg/l	250 mg/l
Trichlorethylen (TRI) & Perchlorethylen (PER)	∑ 10 µg/l	∑10 μg/l
Wassertemperatur		-
	je 0,1 μg/l	je 0,1 μg/l
Wirkstoffe in Pflanzenschutzmitteln/relevante Metaboliten	Σ 0,5 μg/l	Σ 0,5 μg/l
Nicht relevante Metaboliten		-

Nitrat (Min/Max- und Mittelwerte, Einhaltung Grenzwert) in GWM der Grundwasserkörper im Zeitraum 2009 - 2016

Grundwasserkörper	Anzahl Mst. mit 8 Jahres-MW (2009 - 2016)		Spannweite (Min Max.) [mg/l]		Mittelwert [mg/l]		Anz. Mst. deren MW (2009 - 2016) ≥ 50 mg/l (% Anteil)	
	1	2	1	2	1	2	1	2
Ise Lockergestein links	47	16	< 0,05 - 144	0,14 - 11	24	0,86	11 (23 %)	0 (0,0 %)
Ise Lockergestein rechts	22	3	< 0,44 - 204	0,032 - 3,6	61	0,51	14 (64 %)	0 (0,0 %)
Obere Aller Lockergestein links	17	3	< 0,089 - 302	0,12 - 11	18	0,89	2 (12 %)	0 (0,0 %)
Obere Aller mesoz. Festgestein links	7	5	0,20 - 204	0,25 - 2,2	48	0,51	2 (29 %)	0 (0,0 %)
Ohre-Urstromtal (Obere Ohre)	9	0	< 0,44 - 133	-	78	-	7 (78 %)	-
Gesamt	102	27	< 0,05 - 302	0,032 - 11	37	0,76	38 (35 %)	0 (0,0 %)

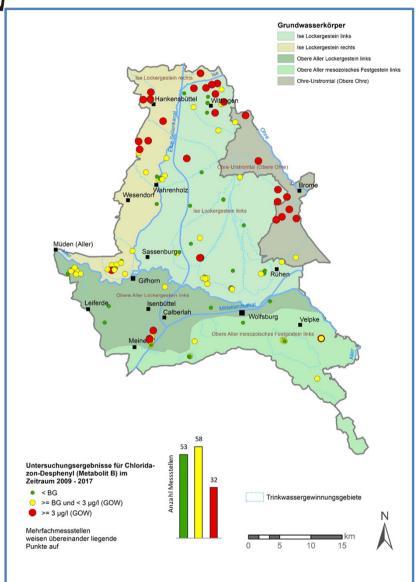

Nitratkonzentration (gemittelte Jahresmittelwerte) je Stockwerk 2009 bis 2016 (1.GW-Stockwerk: n = 102; 2./3. GW-Stockwerk: n = 27)




Anteil beurteilbarer Mst. (mind. 8 Werte vorhanden) mit signifikant ansteigenden bzw. abnehmenden Nitratgehalten bzw. ohne sig. Veränderung der Nitratgehalte (R² < 0,6) zwischen 2008 und 2016 (Mst. mit Nitratgehalten ≥ 5mg/l; n = 43)

Untersuchungen und Funde von PSM-Wirkstoffen und relevante Metaboliten im Zeitraum 2009 - 2017

	Anzahl							
Wirkstoff/relev. Metabolit		analysierte		GWM mit		GWM mit		
Wil KStoff/Telev. Metabolit	Analysen	GWM	bestätigte	bestätigtem	Funde > 0,1	Fund > 0,1		
	gesamt	gesamt	Funde > BG	Fund>BG	μg/l	μg/l		
1,2-Dichlorpropan (Nematizid, nicht zugelassen)	787	136	53	6	17	3		
Metalaxyl, Methalaxyl-M (Fungizid, zugelassen)	718	143	24	7	12	4		
Oxadixyl (Fungizid, nicht zugelassen)	376	135	20	5	14	4		
Ethidimuron (Herbizid, nicht zugelassen)	648	147	16	2	15	2		
Bentazon (Herbizid, nicht zugelassen, Aufbrauchfrist bis								
zum 31.07.2019)	995	151	14	5	7	3		
Metribuzin (Herbizid, zugelassen)	843	151	8	3	5	2		
Atrazin (Herbizid, nicht zugelassen)	825	151	3	1				
Desethylatrazin (rM von Atrazin)	772	151	2	1				
Desethylterbuthylazin (rM von Terbutylazin)	851	151	2	1				
Desisopropyl-Atrazin (rM von Atrazin)	764	150	2	1				

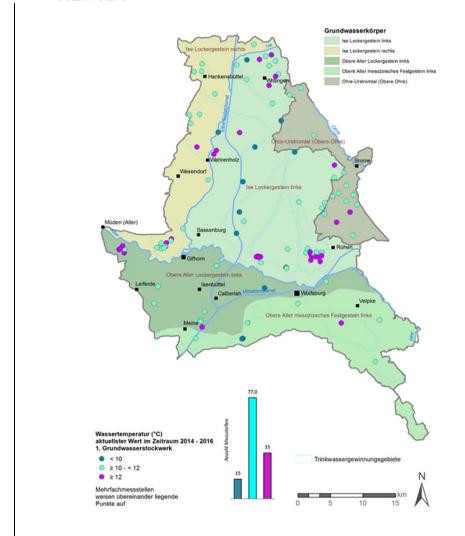

Untersuchungen und Funde nicht relevanter Metaboliten im Zeitraum 2009 - 2017

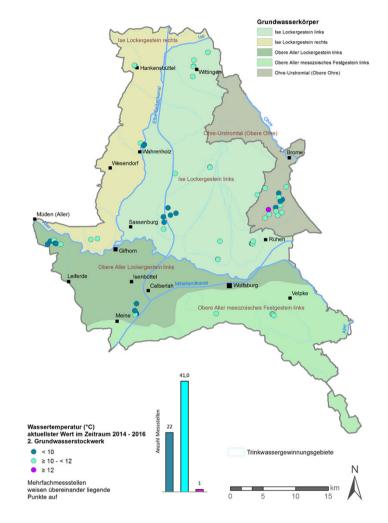
	Anzahl						
						GWM mit	
Nicht relevanter Metabolit		analysierte		GWMmit	Funde >=	Fund > =	
	Analysen	GWM	bestätigte	bestätigtem	GOW ((1	GOW (1	
	gesamt	gesamt	Funde > BG	Fund > BG	oder 3 µg/l)	oder 3 μg/l)	
Chloridazon-desphenyl (Metabolit B)	757	143	519	90	185	32	
Chloridazon-methyl-desphenyl (Metabolit B1)	641	141	314	56	4	3	
S-Metolachlor-Sulfonsäure (Metabolit CGA 380168/CGA 354743)	738	148	205	41	30	8	
Metazachlor-Sulfonsäure (Metabolit BH 479-8)	782	148	204	41	12	7	
S-Metolachlor-Säure (Metabolit CGA 51202/CGA 351916)	804	151	187	34	16	4	
Metazachlor-Säure (Metabolit BH 479-4)	773	145	157	33	14	6	
N,N-Dimethylsulfamid (DMS)	817	151	107	21			
S-Metolachlor-Sulfonsäure (Metabolit NOA 413173)	312	128	84	31	11	3	
2,6-Dichlorbenzamid	827	151	82	16	1	1	
Metalaxyl-Dicarbonsäure (Metabolit CGA 108906)	223	97	66	23			
Chlorthalonil-Sulfonsäure (Metabolit R 417888/M12)	522	102	54	16	5	2	
Metalaxyl-Säure (Metabolit CGA 62826/NOA 409045)	212	97	32	13			
Dimethachlor-Sulfonsäure (Metabolit CGA 369873)	510	133	28	10	1	1	
S-Metolachlor Metabolit: CGA 357704	107	46	12	5			
S-Metolachlor-Sulfonsäure (Metabolit CGA 368208)	111	45	6	3			
Dimethachlor-Sulfonsäure (Metabolit CGA 354742)	325	126	5	2	1	1	
Dimethachlor-Säure (Metabolit CGA 50266)	556	133	2	1			
Flufenacet-Sulfonsäure (Metabolit M2)	112	46	2	1			

Untersuchungen gesamt auf PSW-Wirkstoffe und relevante bzw. nicht relevante Metaboliten

Chloridazon-Desphenyl (Metabolit B) - Gehalte

Wassertemperatur (Min/Max- und Mittelwerte, Einhaltung Grenzwert) in GWM der Grundwasserkörper im Zeitraum 2009 - 2016


Grundwasserkörper	8 Jahr	Mst. mit es-MW - 2016)	Spanr (Min [°	Mittelwert [°C]		
	1	2	1	2	1	2
Ise Lockergestein links	38	20	7,7 - 15,4	8,7 - 11,8	10,5	10,2
Ise Lockergestein rechts	23	4	8,7 - 17,6	8,9 - 11,1	11,2	10,3
Obere Aller Lockergestein links	17	2	7,8 - 14,9	8,8 - 10,6	10,7	9,7
Obere Aller mesoz. Festgestein links	10	12	9,4 - 13,3	9,4 - 12,7	10,6	10,2
Ohre-Urstromtal (Obere Ohre)	9	9	9,6 - 11,8	9,6 - 11,8	10,4	10,4
Gesamt	97	47	7,7 - 17,6	8,7 - 12,7	10,7	10,2


Wassertemperatur (Jahresmittelwerte) je Stockwerk 2009 bis 2016

Zusammenfassung für weitere Hauptkomponenten (Bezug: Mittelwert des Zeitraumes 2009 – 2016)

Ammonium

 8 % der GWM (8 von 102 Mst.) überschreiten den Schwellenwert der GrwV. Diese befinden sich alle im 1.GW-Stockwerk und insbesondere am Rand oder in den Niederungsbereichen der Mittelweser-Aller-Leine Niederung, des Drömlings und der Ohre Niederung und somit im Bereich reduzierender Verhältnisse, was auf natürliche Ursachen hinweist.

Chlorid

- Erhöhte Chloridgehalte über dem Schwellenwert der GrwV von 250 mg/l treten bei 3 von 103
 Messstellen (3 % aller GWM) nur im 1. GW-Stockwerk auf. 2 dieser 3 sind vermutlich bedingt durch die Nähe zu einem Salzstock.
- Chloridgehalte im 2. und 3. GW-Stockwerk liegen im Durchschnitt um 44 % niedriger als die Gehalte im 1. GW-Stockwerk.

Leitfähigkeit

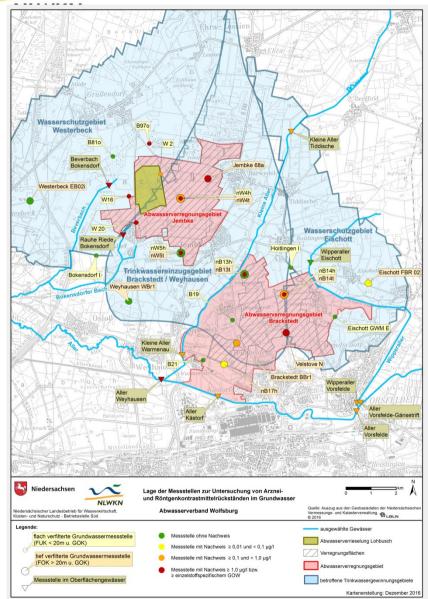
- Im Aller/Quelle & Mulde-Gebiet sind Leitfähigkeiten von durchschnittlich rund 760 μS/cm im 1. GW-Stockwerk und rund 360 μS/cm in den tiefer liegenden Stockwerken vorherrschend.
- Dabei **tritt eine Grenzwertüberschreitung laut TrinkwV** nur in einem Fall auf. Grund hierfür ist ein Salzstock im Messstellenbereich.

> pH-Wert

- Vor allem Messstellen mit einer Verfilterung im 1.GW-Stockwerk zeigen saure pH-Werte von durchschnittlich pH 6,2.
- 61% der Messstellen im 1.GW-Stockwerk sind gemäß TrinkwV grenzwertüberschreitend. Im 2./3. GW-Stockwerk sind es nur rund 8 %.

> Sulfat

- Erhöhte Sulfatgehalte über dem Grenzwert von 250 mg/l treten im Aller/Quelle & Mulde-Gebiet nur an 4 von 141 Messstellen (3 % der GWM) auf. Bei einer Messstelle besteht ein Zusammenhang mit Versalzungsstrukturen.
- Auffällig ist, dass die Sulfatgehalte des 1. GW-Stockwerks über dem des 2./3. GW-Stockwerks liegen.



Metalle und Leichtflüchtige Chlorkohlenwasserstoffe (jeweils aktuellster Wert aus 2013 – 2016)

	Anz. Mst.	davon > Schwellenwert
Arsen	108	2
Cadmium	104	9 (0 > Grenzwert nach TVO)
Blei	102	1
Quecksilber	104	0
Trichlorethen/ Tetrachlorethen	73	1

Exkurs:

Abbildung aus dem Themenbericht "Arznei- und Röntgenkontrastmittel im Grund- und Oberflächengewässer, 2017

Untersuchte GW- und OW-Messstellen in den Verregnungsgebieten Jembke - Brackstedt

Vielen Dank für Ihre Aufmerksamkeit!